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Abstract

Timoshenko’s theory of vibrating beams requires a shear correction factor to correctly take into account
the effects of shear deformation for different beam cross-sections. This correction is crucial for a precise
determination of the shear modulus from the resonant frequencies. Hutchinson’s beam theory is used to
derive a new shear correction coefficient for anisotropic materials. A comparison is made with other shear
coefficients for anisotropic materials published in the literature. Computer-simulated spectra are used to
validate the new anisotropic shear correction coefficient.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A precondition for the determination of the shear modulus from the resonant frequencies of a
vibrating isotropic beam with Timoshenko’s beam theory [1,2] is a correctional factor k; that takes
the distribution of the shear stress over the cross-section of the beam into account. All attempts to
adapt Timoshenko’s beam theory to anisotropic materials have in common, that they are based
on suitable shear correction factors. The work of Dharmarajan and McCutchen [3] extends the
derivation of Cowper’s [4] shear correction factor to non-isotropic materials, such as composites.
Kawashima [5] derives the shear coefficient for quartz crystals with rectangular cross-sections and
relies also to a small degree on Cowper’s definitions. He also notes, that the shear correction
factor for a rectangular beam resulting from his theory has no dependence on the width and depth
of the vibrating beam. For isotropic materials, both theories reduce to Cowper’s shear correction
coefficient.
The drawback of these shear correction coefficients is that none incorporates a possible

dependence on the width and the height of the beam, and that Cowper’s shear coefficient is not
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considered ‘‘best’’ even if the dependence on the width and the height of the beam is being
neglected [6–9].
Stephen published a second order beam theory [7], based on the idea, that gravitational loading

of a beam represents the flexural vibrations of a beam better than a tip-loaded cantilever.
Hutchinson obtained the same results with a simple dynamic beam theory [6,10]. Both theories
find a dependence of the shear correction coefficient on the width and height of the vibrating
beam. This dependence has also been found [11] in experiments and calculated eigenfrequency
spectra, which have been calculated via the theory of resonant ultrasound spectroscopy (RUS),
which is based on the solution of the three-dimensional free body problem [12–15].
This paper aims to derive a shear correction coefficient for anisotropic beams via the method

that has been employed and published by Hutchinson [6]. It will focus on the differences between
the derivation of the anisotropic and the isotropic shear correction coefficient, since the course of
derivation is similar for both, and tries to complement Hutchinson’s publication. The
performance of the new and the two published [3,5] shear correction coefficients is tested with
eigenfrequency spectra, which are obtained by using the theory of resonant ultrasound
spectroscopy.

2. The new anisotropic shear correction coefficient

In order to be able to find the shear correction coefficient for an anisotropic vibrating beam, the
same assumptions have to be made as in the case of an isotropic beam: the direct stress, shear
stress and displacement are assumed to be well represented by those of a tip-loaded cantilever,
which can be solved analytically (see Ref. [16, Chapter XV]).
Note that this paper uses the co-ordinate system (see Fig. 1) introduced in the paper by

Hutchinson [6].

2.1. The displacement field

The displacement field is based on Love’s [16, Chapter XV] solution for a tip-loaded anisotropic
cantilever. Instead of Love’s bending moment MðxÞ ¼ V ðl � xÞ; the dynamic moment curvature
relation Mðx; tÞ ¼ ExIz@cðx; tÞ=@x is used, where cðx; tÞ is the rotation of the cross-section, V is
the shearing force, Ex is Young’s modulus in the direction of the beam, Iz is the second moment of
area about the z-axis and l is the length of the beam.
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Fig. 1. The co-ordinate system with the moment ðMÞ and shear ðV Þ sign convention.
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Love’s [16, Chapter XV] displacement field u; v and w for the x-, y- and z-directions,
respectively, can then be written as

u ¼ tfðy; zÞ � ycðx; tÞ

�
V

ExIz

wðy; zÞ þ
Ex � Gxynxy � 2Gxznxz

2Gxz

yz2
� �

þ by þ az þ a0; ð1Þ

v ¼ �tzx þ
1

2

@cðx; tÞ
@x

ðnxyy2 � nxzz
2Þ þ

Z
cðx; tÞ dx

� �
� gz þ bx þ b0; ð2Þ

w ¼ txy þ nxz

@cðx; tÞ
@x

yz þ gy � ax þ g0; ð3Þ

where a; b; g; t; a0; b0 and g0 are constants of integration, G
**
and n

**
are the shear moduli and

the Poisson ratios for the different directions of the beam, fðy; zÞ is the torsion function, and
wðy; zÞ is a harmonic function that fulfills the criteria set out in [16, Chapter XV], namely

Gxy

@2

@y2
þ Gxz

@2

@z2

� �
wðy; zÞ ¼ 0; ð4Þ

at all points of the cross-section and the boundary condition

cosðy; nÞGxy

@wðy; zÞ
@y

þ cosðz; nÞGxz

@wðy; zÞ
@z

¼ �cosðy; nÞGxy

nxy

2
y2 þ

Ex � Gxynxy � 2Gxznxz

2Gxz

z2
� �

� cosðz; nÞððEx � GxynxyÞyzÞ; ð5Þ

at all points on the boundary curve. The constants of integration in Eqs. (1)–(3) can be determined
with several boundary conditions.
The constants a0; b0 and g0 are zero if the origin is set into the center of the cross-section at the

fixed end of the beam, since the functions fðy; zÞ and wðy; zÞ can be adjusted to vanish at the origin.
Because the beam is assumed to be a tip-loaded cantilever, the following constraints are valid for
the fixed end of the beam. The first constraint fixes the direction of the line along the z-axis
through the origin, so that it always retains its initial direction.

@u

@z

����
ðx;y;zÞ¼0

¼ 0 and
@v

@z

����
ðx;y;zÞ¼0

¼ 0: ð6Þ

The second constraint fixes the cross-section through that line

@u

@y

����
ðx;y;zÞ¼0

¼ 0: ð7Þ

The first constraint gives a ¼ 0 and g ¼ 0; the second

b ¼ �
V

ExIz

@wðy; zÞ
@y

����
ðy;zÞ¼0

: ð8Þ
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With the definition of s0; representing the angle by which the cross-section is turned back towards
the central line (see [16, Chapter XV] for details), as

s0 ¼ �
V

ExIz

@wðy; zÞ
@y

����
ðy;zÞ¼0

; ð9Þ

the displacement in x direction may be written in the form

u ¼ � ycðx; tÞ þ by þ s0y þ tfðy; zÞ

�
V

ExIz

wðy; zÞ � y
@wðy; zÞ

@y

����
ðy;zÞ¼0

þ
Ex � Gxynxy � 2Gxznxz

2Gxz

yz2

" #
: ð10Þ

The term in the rectangular brackets represents a distortion of the cross-section. It is ignored,
since one assumes that the cross-sections remain plane after deformation.
The deflection normal to the central line of the beam jðx; tÞ is defined as the value of v at

y ¼ z ¼ 0; as

jðx; tÞ ¼
Z

cðx; tÞ dx þ bx: ð11Þ

With this definition and the exclusion of torsional effects (t ¼ 0), which is only possible if the
beam is symmetric about the y-axis, the displacement can then be written as

u ¼ �ycðx; tÞ: ð12Þ

v ¼ jðx; tÞ þ
1

2
ðnxyy2 þ nxzz

2Þ @cðx; tÞ=@x: ð13Þ

w ¼ nxzyz @cðx; tÞ=@x: ð14Þ

2.2. The beam theory

Both the direct and the shear stresses are chosen to be consistent with a tip-loaded cantilever as
in Ref. [6], with the exception that the functions f1ðy; zÞ and f2ðy; zÞ for anisotropic material are
used (see Ref. [16, Chapter XV]).

f1ðy; zÞ ¼ �
Gxy

Ex

@wðy; zÞ
@y

þ
nxy

2
y2 þ

E � Gxynxy � 2Gxznxz

2Gxz

z2
� �

: ð15Þ

f2ðy; zÞ ¼ �
Gxz

Ex

@wðy; zÞ
@z

þ
Ex � Gxynxy

Gxz

yz

� �
: ð16Þ

These functions still fulfill the following properties, since they do not depend on the level of
anisotropy. Z

A

f1ðy; zÞ dA ¼ Iz and

Z
A

f2ðy; zÞ dA ¼ 0: ð17Þ

The dynamic Hellinger–Reissner [17] principle for the anisotropic system with a volume V ; which
stands at the beginning of the derivation of the anisotropic shear correction coefficient, differs
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only slightly from the version for an isotropic system.

d
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�
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�
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2Gxz

�
r
2
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The course of the derivation is analogous to the derivation of the isotropic shear correction
coefficient presented by Hutchinson [6]. The main difference is that the definitions of the
equations and constants have to be adapted to reflect the different elastic symmetry, i.e., instead
of E; G and n the equations and constants now depend upon Ex; Gxy; Gxz; nxy and nxz:
The result is the new anisotropic shear correction coefficient k

k ¼ �
Ex

Gxy½ðA=I2z ÞC4 þ nxy � ðIy=IzÞnxz�
; ð19Þ

with C4 defined as

C4 ¼
Z
A

�y2nxyf1ðy; zÞ þ z2nxzf1ðy; zÞ
	

� 2yznxzf2ðy; zÞ � Ex

f1ðy; zÞ
2

Gxy

þ
f2ðy; zÞ

2

Gxz

� ��
dy dz: ð20Þ

By inserting the definitions of f1ðy; zÞ; f2ðy; zÞ and applying the potential transformation from
Appendix A, C4 has the general form

C4 ¼
Z
A
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#
dy dz ð21Þ

C4 can then be obtained by inserting the appropriate harmonic function wðy; zÞ into Eq. (21) and
integrating over the cross-section.
The potential transformation converts the the shear correction coefficient from the type of

representation used by Hutchinson for his isotropic shear correction coefficient to the type of
representation used by Stephen (see Ref. [10]). The benefit of this conversion is that the
integration over the cross-section in Stephen’s expression can be performed much easier for the
rectangular cross-section, because the harmonic function wðy; zÞ for a rectangular cross-section
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includes a summation. This is not necessarily true for other types of cross-sections with different
harmonic functions.
The most useful cross-section in practical applications for anisotropic beams is likely the

rectangular cross-section with the harmonic function

wðy; zÞ ¼
b2nxz

3
þ

a2ð�Ex þ Gxznxy � GxynxzÞ
2Gxy

� �
y

þ
Ex � Gxznxy

6Gxy

ðy3 � 3yz2Þ þ
4b3nxz

p3
XN
n¼1

ð�1Þn

n3
sinhðnpy

b
Þ

coshðnpa
b
Þ
cos

npz

b

 �
: ð22Þ

Its derivation is similar to the derivation of the harmonic function for an isotropic beam with a
rectangular cross-section [16, Chapter XV]. The final form of C4 for beams with a rectangular
cross-section remains unquoted, since it is even more lengthy than Eq. (21).

3. Comparison with computer simulations

The shear correction coefficient has been tested with simulated resonant spectra of rectangular
cubic ‘‘copper’’ beams. Young’s modulus ð66:7 GPaÞ and the Poisson ratio (0:41) are held
constant and the shear modulus is varied from 5 to 75 GPa; where 75 GPa is the shear modulus of
of real cubic copper crystals. The resonant spectra themselves were obtained using the theory of
RUS. This measurement method is based on a series solution of the three-dimensional free body
problem. The calculated spectra are usually fitted to the measured spectra with the elastic
constants as fitting parameters. Here, this theory is only employed to calculate an eigenfrequency
spectrum from a known set of elastic constants. Care has been taken to use a high enough order in
the series expansion, so that further elements in the series expansion would not change the
calculated eigenfrequency-spectra further. This high order is necessary, because the samples used
in connection with Timoshenko’s beam theory are much longer than the typical RUS sample,
which is a small cube.
A beam with rectangular cross-section and cubic anisotropy was chosen to test the different

shear correction coefficients. It is a simple and concise system and allows the variation of the
anisotropy over a wide range, including the special case of isotropy.
The shear correction coefficient for a beam with a rectangular cross-section and cubic

anisotropy is

k ¼ �E=G½ð9=4a5bÞC4 þ nð1� b2=a2Þ�; ð23Þ

with

C4 ¼ a5b �
8

15

E

G
�
4

15
n

� �
þ
4

9
a3b3nþ

XN
n¼1

32Gn2b5ðnpa � b tanhðnpa=bÞÞ

ðnpÞ5E
; ð24Þ

where 2b is the width (direction of the z-axis) and 2a is the depth of the beam (direction of the
y-axis).
Samples with various width to depth ratios and a varying shear modulus were simulated and

used to compare the new shear correction coefficient with the shear correction coefficients by
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Dharmarajan and Kawashima, that have no dependence on the width to depth ratio of the beam
(Figs. 2 and 3).
Fig. 2 shows 1=k for two samples with square cross-sections, and a width to length ratio of 1

10
and 1

7
; respectively. It is obvious, that only the shear correction coefficient presented in this paper

is able to reproduce the simulated values. It is also apparent from the two figures, that the shear
correction coefficient coincides better with the simulated values from the beam with the lower
width/length ratio. This should not be much of a problem if higher vibrational modes are used,
since the accuracy of higher and higher modes becomes more and more dependent on a low width/
length ratio. A rule of thumb for the isotropic theory is that accurate results can be obtained with
Timoshenko’s shear coefficient for wave lengths greater than twice the beam depth [18].
The reciprocal shear correction coefficients for flatwise (aob) and edgewise (a > b) vibrations of

two different rectangular beams with non-square cross-section in Fig. 3 exhibit the same behavior
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Fig. 2. A comparison of the reciprocal shear correction coefficient taken from the simulated measurements (denoted by

the circles) with the reciprocal of the three shear correction coefficients from the different models (denoted by the lines).

The width to length ratio of the beams, which have a square cross-section, is 1
10
in the left figure and 1

7
in the right figure.

The different models are: D—Dharmarajan, K—Kawashima, and N—the new coefficient.
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Fig. 3. The simulated and the calculated reciprocal shear correction coefficient for the flatwise and the edgewise

vibrational modes of two beams with different width to depth ratios. The circles and crosses denote simulated and the

lines the corresponding calculated values for the three different models. The different models are: D—Dharmarajan,

K—Kawashima, and N—the new coefficient for flatwise (fw, b > a) and edgewise (ew, boa) vibrations of beams with a

cross-section of 5	 7 in the left and 6	 7 in the right figure. The units of depth and width are of no importance for k;
since it depends only on the ratio a=b: All beams are 50 units long.
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as isotropic beams [11]. The shear correction coefficient is always better for beams with a depth
greater than their width (a > b). Since the ratio a=b of the beam in the right subfigure is closer to 1
than in the left subfigure, the flat- and edgewise coefficients of the beam in the right subfigure
converge to the value for the beam with a square cross-section and a width to length ratio of 1

7
: It

should also be noted that the agreement of the shear correction coefficient published by
Dharmarajan and McCutchen [3] with the edgewise vibrational mode becomes better as the ratio
b=a decreases. This is very similar to the situation that can be observed with isotropic beams,
where Timoshenko’s shear correction coefficient is the limit of Hutchinson’s coefficient for small
ratios b=a:
That the reciprocal shear correction coefficient tends to decrease as the shear modulus becomes

small is a distinct feature that can be found in most, but not in all shear correction coefficients of
the simulated beams. Although Kawashima’s coefficient seems to describe this tendency, it should
not be over-interpreted. The transversal-shear deformation is a perturbation in Timoshenko’s
beam theory that vanishes as the shear modulus goes towards zero. Thus, it also becomes more
difficult to quantify the corresponding correctional coefficient k for small shear moduli. Therefore
it is probable that this deviation of the simulated values from the theoretical values in the limit of
G-0 is only an artifact of the evaluation of the calculated spectra.

4. Conclusion

A new shear correction coefficient k for Timoshenko’s beam theory has been derived for
anisotropic materials based on Hutchinson’s theory for isotropic beams. Results based on
Timoshenko’s beam theory and this shear correction coefficient agree very well with numerical
results based on the theory of resonant ultrasound spectroscopy. The new shear correction
coefficient is a vital step towards the precise measurement of the shear modulus of anisotropic
beams with different cross-sections via the resonant frequencies.
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Appendix A. The potential transformation

The potential transformation is an extension of the potential transformation published by
Stephen [10]. It is based on the identityZ

A

@

@y
Gxyðwðy; zÞ þ yz2Þ

@wðy; zÞ
@y

� �
�

@

@z
�Gxzðwðy; zÞ þ yz2Þ

@wðy; zÞ
@z

� �
dy dz

¼
Z
A

Gxz

@wðy; zÞ
@z

2yz þ
@wðy; zÞ

@z

� �
þ Gxy

@wðy; zÞ
@y

z2 þ
@wðy; zÞ

@y

� �
dy dz: ðA:1Þ
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The left side of the equation is first transformed via Gauss’s theorem into a line integral. Then the
general boundary conditions for an anisotropic beams [16, Chapter XV]

@w
@y

¼ �
nxy

2
y2 þ

Ex � Gxynxy � 2Gxznxz

2Gxz

z2; ðA:2Þ

@w
@z

¼ �
Ex � Gxynxy

Gxz

yz ðA:3Þ

are inserted into the integral and it is transformed back into an area integral, again via Gauss’s
theorem. Rearranging the terms gives then the required transformationZ

A

Gxz
@wðy; zÞ

@z

2

þ Gxy
@wðy; zÞ

@y

2� �
dy dz

¼ �
Z
A

ðEx � GxynxyÞ yz2 þ wðy; zÞ þ 2yz2 þ
@wðy; zÞ

@z
z

� �
y dy dz

þ
Z
A

Gxy �
nxy

2
y2 �

ðEx � Gxynxy � 2GxznxzÞ
2Gxz

z2
� �

z2 þ
@wðy; zÞ

@y

� �
dy dz

�
Z
A

Gxynxyðyz2 þ wðy; zÞÞy dy dz �
Z
A

2Gxz

@wðy; zÞ
@z

yz dy dz

�
Z
A

Gxy

@wðy; zÞ
@y

z2 dy dz: ðA:4Þ
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